Trajectory Generation
Back to Home
01. From Behavior to Trajectory
02. Lesson Overview
03. The Motion Planning Problem
04. Properties of Motion Planning Algorithms
05. Types of Motion Planning Algorithms
06. A* Reminder
07. A* Reminder Solution
08. Hybrid A* Introduction
09. Hybrid A* Tradeoffs
10. Hybrid A* Tradeoffs Solution
11. Hybrid A* in Practice
12. Hybrid A* Heuristics
13. Hybrid A* Pseudocode
14. Implement Hybrid A* in C++
15. Implement Hybrid A* in C++ (solution)
16. Environment Classification
17. Frenet Reminder
18. The Need for Time
19. s, d, and t
20. Trajectory Matching
21. Structured Trajectory Generation Overview
22. Trajectories with Boundary Conditions
23. Jerk Minimizing Trajectories
24. Derivation Overview
25. Derivation Details 2
26. Polynomial Trajectory Generation
27. Implement Quintic Polynomial Solver C++
28. Implement Quintic Polynomial Solver Solution
29. What should be checked?
30. Implementing Feasibility
31. Putting it All Together
32. Polynomial Trajectory Reading (optional)
33. Polynomial Trajectory Generation Playground
34. Conclusion
35. Bonus Round: Path Planning [Optional]
Back to Home
11. Hybrid A* in Practice
10 L Hybrid A- In Practice
Pause
Play
% buffered
00:00
00:00
Unmute
Mute
Disable captions
Enable captions
Settings
Captions
Disabled
Quality
undefined
Speed
Normal
Captions
Go back to previous menu
Disabled
en
EN
JP
JP
CN
CN
Quality
Go back to previous menu
Speed
Go back to previous menu
0.5×
0.75×
Normal
1.25×
1.5×
1.75×
2×
Exit fullscreen
Enter fullscreen
Play
Next Concept